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Matrix Norms

We consider matrix norms on (Cm,n,C). All results holds for
(Rm,n,R).

Definition (Matrix Norms)
A function ‖·‖ : Cm,n → C is called a matrix norm on Cm,n if
for all A,B ∈ Cm,n and all α ∈ C

1. ‖A‖ ≥ 0 with equality if and only if A = 0. (positivity)

2. ‖αA‖ = |α| ‖A‖. (homogeneity)

3. ‖A + B‖ ≤ ‖A‖+ ‖B‖. (subadditivity)

A matrix norm is simply a vector norm on the finite
dimensional vector spaces (Cm,n,C) of m × n matrices.



Equivalent norms

Adapting some general results on vector norms to matrix
norms give

Theorem
x

1. All matrix norms are equivalent. Thus, if ‖·‖ and ‖·‖′ are
two matrix norms on Cm,n then there are positive
constants µ and M such that µ‖A‖ ≤ ‖A‖′ ≤ M‖A‖
holds for all A ∈ Cm,n.

2. A matrix norm is a continuous function ‖·‖ : Cm,n → R.



Examples

I From any vector norm ‖ ‖V on Cmn we can define a
matrix norm on Cm,n by ‖A‖ := ‖vec(A)‖V , where
vec(A) ∈ Cmn is the vector obtained by stacking the
columns of A on top of each other.

I

‖A‖S :=
m∑

i=1

n∑
j=1

|aij |, p = 1, Sum norm,

‖A‖F :=
( m∑

i=1

n∑
j=1

|aij |2
)1/2

, p = 2, Frobenius norm,

‖A‖M := max
i ,j
|aij |, p =∞, Max norm.

(1)



The Frobenius Matrix Norm 1.

I ‖AH‖2F =
∑n

j=1

∑m
i=1|aij |2 =

∑m
i=1

∑n
j=1|aij |2 = ‖A‖2F .



The Frobenius Matrix Norm 2.

I
∑m

i=1

∑n
j=1|aij |2 =

∑m
i=1‖ai ·‖22

I
∑m

i=1

∑n
j=1|aij |2 =

∑n
j=1

∑m
i=1|aij |2 =

∑n
j=1‖a·j‖22.



Unitary Invariance.

I If A ∈ Cm,n and U ∈ Cm,m, V ∈ Cn,n are unitary

I ‖UA‖2F
2.
=
∑n

j=1‖Ua·j‖22 =
∑n

j=1‖a·j‖22
2.
= ‖A‖2F .

I ‖AV‖F
1.
= ‖VHAH‖F = ‖AH‖F

1.
= ‖A‖F .



Submultiplicativity

I Suppose A,B are rectangular matrices so that the
product AB is defined.

I ‖AB‖2F =
∑n

i=1

∑k
j=1

(
aT

i · b·j
)2 ≤∑n

i=1

∑k
j=1‖ai ·‖22‖b·j‖22 = ‖A‖2F‖B‖2F .



Subordinance

I ‖Ax‖2 ≤ ‖A‖F‖x‖2, for all x ∈ Cn.

I Since ‖v‖F = ‖v‖2 for a vector this follows from
submultiplicativity.



Explicit Expression

I Let A ∈ Cm,n have singular values σ1, . . . , σn and SVD
A = UΣVH . Then

I ‖A‖F
3.
= ‖UHAV‖F = ‖Σ‖F =

√
σ2

1 + · · ·+ σ2
n.



Consistency

I A matrix norm is called consistent on Cn,n if

4. ‖AB‖ ≤ ‖A‖ ‖B‖ (submultiplicativity)

holds for all A,B ∈ Cn,n.

I A matrix norm is consistent if it is defined on Cm,n for
all m, n ∈ N, and 4. holds for all matrices A,B for which
the product AB is defined.

I The Frobenius norm is consistent.

I The Sum norm is consistent.

I The Max norm is not consistent.

I The norm ‖A‖ :=
√

mn‖A‖M , A ∈ Cm,n is consistent.



Subordinate Matrix Norm

Definition

I Suppose m, n ∈ N are given,

I Let ‖ ‖α on Cm and ‖ ‖β on Cn be vector norms, and let
‖ ‖ be a matrix norm on Cm,n.

I We say that the matrix norm ‖ ‖ is subordinate to the
vector norms ‖ ‖α and ‖ ‖β if ‖Ax‖α ≤ ‖A‖ ‖x‖β for all
A ∈ Cm,n and all x ∈ Cn.

I If ‖ ‖α = ‖ ‖β then we say that ‖ ‖ is subordinate to ‖ ‖α.

I The Frobenius norm is subordinate to the Euclidian
vector norm.

I The Sum norm is subordinate to the l1-norm.

I ‖Ax‖∞ ≤ ‖A‖M‖x‖1.



Operator Norm

Definition
Suppose m, n ∈ N are given and let ‖·‖α be a vector norm on
Cn and ‖·‖β a vector norm on Cm. For A ∈ Cm,n we define

‖A‖ := ‖A‖α,β := max
x6=0

‖Ax‖β
‖x‖α

. (2)

We call this the (α, β) operator norm, the (α, β)-norm, or
simply the α-norm if α = β.



Observations

I ‖A‖α,β = maxx/∈ker(A)
‖Ax‖α
‖x‖β

= max‖x‖β=1‖Ax‖α.
I ‖Ax‖α ≤ ‖A‖‖x‖β.

I ‖A‖α,β = ‖Ax∗‖α for some x∗ ∈ Cn with ‖x∗‖β = 1.

I The operator norm is a matrix norm on Cmn,.

I The Sum norm and Frobenius norm are not an α operator
norm for any α.



Operator norm Properties

I The operator norm is a matrix norm on Cm,n.

I The operator norm is consistent if the vector norm ‖ ‖α is
defined for all m ∈ N and ‖ ‖β = ‖ ‖α.



Proof

In 2. and 3. below we take the max over the unit sphere Sβ.

1. Nonnegativity is obvious. If ‖A‖ = 0 then ‖Ay‖β = 0 for
each y ∈ Cn. In particular, each column Aej in A is zero.
Hence A = 0.

2. ‖cA‖ = maxx‖cAx‖α = maxx|c | ‖Ax‖α = |c | ‖A‖.
3. ‖A + B‖ = maxx‖(A + B)x‖α ≤

maxx‖Ax‖α + maxx‖Bx‖α = ‖A‖+ ‖B‖.
4. ‖AB‖ = maxBx 6=0

‖ABx‖α
‖x‖α = maxBx6=0

‖ABx‖α
‖Bx‖α

‖Bx‖α
‖x‖α

≤ maxy 6=0
‖Ay‖α
‖y‖α maxx6=0

‖Bx‖α
‖x‖α = ‖A‖ ‖B‖.



The p matrix norm

I The operator norms ‖·‖p defined from the p-vector norms
are of special interest.

I Recall
‖x‖p :=

(∑n
j=1|xj |p

)1/p
, p ≥ 1, ‖x‖∞ := max1≤j≤n|xj |.

I Used quite frequently for p = 1, 2,∞.

I We define for any 1 ≤ p ≤ ∞

‖A‖p := max
x6=0

‖Ax‖p
‖x‖p

= max
‖y‖p=1

‖Ay‖p. (3)

I The p-norms are consistent matrix norms which are
subordinate to the p-vector norm.



Explicit expressions

Theorem
For A ∈ Cm,n we have

‖A‖1 := max
1≤j≤n

m∑
k=1

|ak,j |, (max column sum)

‖A‖2 := σ1, (largest singular value of A)

‖A‖∞ := max
1≤k≤m

n∑
j=1

|ak,j |, (max row sum).

(4)

The expression ‖A‖2 is called the two-norm or the spectral
norm of A. The explicit expression follows from the minmax
theorem for singular values.



Examples

For A := 1
15

[ 14 4 16
2 22 13 ] we find

I ‖A‖1 = 29
15

.

I ‖A‖2 = 2.

I ‖A‖∞ = 37
15

.

I ‖A‖F =
√

5.

I A := [ 1 2
3 4 ]

I ‖A‖1 = 6

I ‖A‖2 = 5.465

I ‖A‖∞ = 7.

I ‖A‖F = 5.4772



The 2 norm

Theorem
Suppose A ∈ Cn,n has singular values σ1 ≥ σ2 ≥ · · · ≥ σn and
eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Then

‖A‖2 = σ1 and ‖A−1‖2 =
1

σn
, (5)

‖A‖2 = λ1 and ‖A−1‖2 =
1

λn
, if A is symmetric positive definite,

(6)

‖A‖2 = |λ1| and ‖A−1‖2 =
1

|λn|
, if A is normal. (7)

For the norms of A−1 we assume of course that A is
nonsingular.



Unitary Transformations

Definition
A matrix norm ‖ ‖ on Cm,n is called unitary invariant if
‖UAV‖ = ‖A‖ for any A ∈ Cm,n and any unitary matrices
U ∈ Cm,m and V ∈ Cn,n.

If U and V are unitary then U(A + E)V = UAV + F, where
‖F‖ = ‖E‖.

Theorem
The Frobenius norm and the spectral norm are unitary
invariant. Moreover ‖AH‖F = ‖A‖F and ‖AH‖2 = ‖A‖2.



Proof 2 norm

I ‖UA‖2 = max‖x‖2=1‖UAx‖2 = max‖x‖2=1‖Ax‖2 = ‖A‖2.
I ‖AH‖2 = ‖A‖2 (same singular values).

I ‖AV‖2 = ‖(AV)H‖2 = ‖VHAH‖2 = ‖AH‖2 = ‖A‖2.



Perturbation of linear systems

I

x1 + x2 = 20
x1 + (1− 10−16)x2 = 20− 10−15

I The exact solution is x1 = x2 = 10.

I Suppose we replace the second equation by

x1 + (1 + 10−16)x2 = 20− 10−15,

I the exact solution changes to x1 = 30, x2 = −10.

I A small change in one of the coefficients, from 1− 10−16

to 1 + 10−16, changed the exact solution by a large
amount.



Ill Conditioning

I A mathematical problem in which the solution is very
sensitive to changes in the data is called ill-conditioned
or sometimes ill-posed.

I Such problems are difficult to solve on a computer.

I If at all possible, the mathematical model should be
changed to obtain a more well-conditioned or
properly-posed problem.



Perturbations

I We consider what effect a small change (perturbation) in
the data A,b has on the solution x of a linear system
Ax = b.

I Suppose y solves (A + E )y = b+e where E is a (small)
n × n matrix and e a (small) vector.

I How large can y−x be?

I To measure this we use vector and matrix norms.



Conditions on the norms

I ‖·‖ will denote a vector norm on Cn and also a
submultiplicative matrix norm on Cn,n which in addition is
subordinate to the vector norm.

I Thus for any A,B ∈ Cn,n and any x ∈ Cn we have

‖AB‖ ≤ ‖A‖ ‖B‖ and ‖Ax‖ ≤ ‖A‖ ‖x‖.

I This is satisfied if the matrix norm is the operator norm
corresponding to the given vector norm or the Frobenius
norm.



Absolute and relative error

I The difference ‖y − x‖ measures the absolute error in y
as an approximation to x,

I ‖y − x‖/‖x‖ or ‖y − x‖/‖y‖ is a measure for the relative
error.



Perturbation in the right hand side

Theorem
Suppose A ∈ Cn,n is invertible, b, e ∈ Cn, b 6= 0 and Ax = b,
Ay = b+e. Then

1

K (A)

‖e‖
‖b‖
≤ ‖y − x‖

‖x‖
≤ K (A)

‖e‖
‖b‖

, K (A) = ‖A‖‖A−1‖.

(8)

I Proof:

I Consider (8). ‖e‖/‖b‖ is a measure for the size of the
perturbation e relative to the size of b. ‖y − x‖/‖x‖ can
in the worst case be

K (A) = ‖A‖‖A−1‖

times as large as ‖e‖/‖b‖.



Condition number

I K (A) is called the condition number with respect to
inversion of a matrix, or just the condition number, if it
is clear from the context that we are talking about solving
linear systems.

I The condition number depends on the matrix A and on
the norm used. If K (A) is large, A is called
ill-conditioned (with respect to inversion).

I If K (A) is small, A is called well-conditioned (with
respect to inversion).



Condition number properties

I Since ‖A‖‖A−1‖ ≥ ‖AA−1‖ = ‖I‖ ≥ 1 we always have
K (A) ≥ 1.

I Since all matrix norms are equivalent, the dependence of
K (A) on the norm chosen is less important than the
dependence on A.

I Usually one chooses the spectral norm when discussing
properties of the condition number, and the l1 and l∞
norm when one wishes to compute it or estimate it.



The 2-norm

I Suppose A has singular values σ1 ≥ σ2 ≥ · · · ≥ σn > 0
and eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λn| if A is square.

I K2(A) = ‖A‖2‖A−1‖2 = σ1

σn

I K2(A) = ‖A‖2‖A−1‖2 = |λ1|
|λn| , A normal.

I It follows that A is ill-conditioned with respect to
inversion if and only if σ1/σn is large, or |λ1|/|λn| is large
when A is normal.

I K2(A) = ‖A‖2‖A−1‖2 = λ1

λn
, A positive definite.



The residual

Suppose we have computed an approximate solution y to
Ax = b. The vector r(y :) = Ay − b is called the residual
vector , or just the residual. We can bound x−y in term of
r(y).

Theorem
Suppose A ∈ Cn,n, b ∈ Cn, A is nonsingular and b 6= 0. Let
r(y) = Ay − b for each y ∈ Cn. If Ax = b then

1

K (A)

‖r(y)‖
‖b‖

≤ ‖y − x‖
‖x‖

≤ K (A)
‖r(y)‖
‖b‖

. (9)



Discussion

I If A is well-conditioned, (9) says that
‖y − x‖/‖x‖ ≈ ‖r(y)‖/‖b‖.

I In other words, the accuracy in y is about the same order
of magnitude as the residual as long as ‖b‖ ≈ 1.

I If A is ill-conditioned, anything can happen.

I The solution can be inaccurate even if the residual is small

I We can have an accurate solution even if the residual is
large.



The inverse of A + E

Theorem
Suppose A ∈ Cn,n is nonsingular and let ‖·‖ be a consistent
matrix norm on Cn,n. If E ∈ Cn,n is so small that
r := ‖A−1E‖ < 1 then A + E is nonsingular and

‖(A + E)−1‖ ≤ ‖A
−1‖

1− r
. (10)

If r < 1/2 then

‖(A + E)−1 − A−1‖
‖A−1‖

≤ 2K (A)
‖E‖
‖A‖

. (11)



Proof

I We use that if B ∈ Cn,n and ‖B‖ < 1 then I− B is
nonsingular and ‖(I− B)−1‖ ≤ 1

1−‖B‖ .

I Since r < 1 the matrix I− B := I + A−1E is nonsingular.

I Since (I− B)−1A−1(A + E) = I we see that A + E is
nonsingular with inverse (I− B)−1A−1.

I Hence, ‖(A + E)−1‖ ≤ ‖(I− B)−1‖‖A−1‖ and (10)
follows.

I From the identity (A + E)−1 − A−1 = −A−1E(A + E)−1

we obtain by
‖(A + E)−1 − A−1‖ ≤ ‖A−1‖‖E‖‖(A + E)−1‖ ≤
K (A) ‖E‖‖A‖

‖A−1‖
1−r

.

I Dividing by ‖A−1‖ and setting r = 1/2 proves (11).



Perturbation in A

Theorem
Suppose A,E ∈ Cn,n, b ∈ Cn with A invertible and b 6= 0. If
r := ‖A−1E‖ < 1/2 for some operator norm then A + E is
invertible. If Ax = b and (A + E)y = b then

‖y − x‖
‖y‖

≤ ‖A−1E‖ ≤ K (A)
‖E‖
‖A‖

, (12)

‖y − x‖
‖x‖

≤ 2K (A)
‖E‖
‖A‖

.. (13)



Proof

I A + E is invertible.

I (12) follows easily by taking norms in the equation
x− y = A−1Ey and dividing by ‖y‖.

I From the identity y − x =
(
(A + E)−1 − A−1

)
Ax we

obtain ‖y − x‖ ≤ ‖(A + E)−1 − A−1‖‖A‖‖x‖ and (13)
follows.



Finding the rank of a matrix

I Gauss-Jordan cannot be used to determine rank
numerically

I Use singular value decomposition

I numerically will normally find σn > 0.

I Determine minimal r so that σr+1, . . . , σn are ”close” to
round off unit.

I Use this r as an estimate for the rank.



Convergence in Rm,n and Cm,n

I Consider an infinite sequence of matrices
{Ak} = A0,A1,A2, . . . in Cm,n.

I {Ak} is said to converge to the limit A in Cm,n if each
element sequence {Ak(ij)}k converges to the
corresponding element A(ij) for i = 1, . . . ,m and
j = 1, . . . , n.

I {Ak} is a Cauchy sequence if for each ε > 0 there is an
integer N ∈ N such that for each k , l ≥ N and all i , j we
have |Ak(ij)− Al(ij)| ≤ ε.

I {Ak} is bounded if there is a constant M such that
|Ak(ij)| ≤ M for all i , j , k .



More on Convergence

I By stacking the columns of A into a vector in Cmn we
obtain

I A sequence {Ak} in Cm,n converges to a matrix A ∈ Cm,n

if and only if limk→∞‖Ak − A‖ = 0 for any matrix norm
‖·‖.

I A sequence {Ak} in Cm,n is convergent if and only if it is
a Cauchy sequence.

I Every bounded sequence {Ak} in Cm,n has a convergent
subsequence.



The Spectral Radius

I ρ(A) = maxλ∈σ(A)|λ|.
I For any matrix norm ‖·‖ on Cn,n and any A ∈ Cn,n we

have ρ(A) ≤ ‖A‖.
I Proof: Let (λ, x) be an eigenpair for A

I X := [x, . . . , x] ∈ Cn,n.

I λX = AX, which implies
|λ| ‖X‖ = ‖λX‖ = ‖AX‖ ≤ ‖A‖ ‖X‖.

I Since ‖X‖ 6= 0 we obtain |λ| ≤ ‖A‖.



A Special Norm

Theorem
Let A ∈ Cn,n and ε > 0 be given. There is a consistent matrix
norm ‖·‖′ on Cn,n such that ρ(A) ≤ ‖A‖′ ≤ ρ(A) + ε.



A Very Important Result

Theorem
For any A ∈ Cn,n we have

lim
k→∞

Ak = 0⇐⇒ ρ(A) < 1.

I Proof:

I Suppose ρ(A) < 1.

I There is a consistent matrix norm ‖·‖ on Cn,n such that
‖A‖ < 1.

I But then ‖Ak‖ ≤ ‖A‖k → 0 as k →∞.

I Hence Ak → 0.

I The converse is easier.



Convergence can be slow

I A =

0.99 1 0
0 0.99 1
0 0 0.99

 , A100 =

0.4 9.37 1849
0 0.4 37
0 0 0.4

 ,
A2000 =

10−9 ε 0.004
0 10−9 ε
0 0 10−9





More limits

I For any submultiplicative matrix norm ‖·‖ on Cn,n and
any A ∈ Cn,n we have

lim
k→∞
‖Ak‖1/k = ρ(A). (14)


