Matrix Norms

Tom Lyche

Centre of Mathematics for Applications, Department of Informatics, University of Oslo

September 28, 2009

Matrix Norms

We consider matrix norms on $(\mathbb{C}^{m,n},\mathbb{C})$. All results holds for $(\mathbb{R}^{m,n},\mathbb{R})$.

Definition (Matrix Norms)

A function $\|\cdot\| \colon \mathbb{C}^{m,n} \to \mathbb{C}$ is called a **matrix norm** on $\mathbb{C}^{m,n}$ if for all $A, B \in \mathbb{C}^{m,n}$ and all $\alpha \in \mathbb{C}$

1. $||A|| \ge 0$ with equality if and only if A = 0. (positivity)2. $||\alpha A|| = |\alpha| ||A||$. (homogeneity)3. $||A + B|| \le ||A|| + ||B||$. (subadditivity)

A matrix norm is simply a vector norm on the finite dimensional vector spaces $(\mathbb{C}^{m,n},\mathbb{C})$ of $m \times n$ matrices.

Equivalent norms

Adapting some general results on vector norms to matrix norms give

Theorem

- 1. All matrix norms are equivalent. Thus, if $\|\cdot\|$ and $\|\cdot\|'$ are two matrix norms on $\mathbb{C}^{m,n}$ then there are positive constants μ and M such that $\mu\|A\| \leq \|A\|' \leq M\|A\|$ holds for all $A \in \mathbb{C}^{m,n}$.
- 2. A matrix norm is a continuous function $\|\cdot\| : \mathbb{C}^{m,n} \to \mathbb{R}$.

Examples

From any vector norm || ||_V on C^{mn} we can define a matrix norm on C^{m,n} by ||A|| := ||vec(A)||_V, where vec(A) ∈ C^{mn} is the vector obtained by stacking the columns of A on top of each other.

$$\|\mathbf{A}\|_{S} := \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|, \ p = 1, \ \mathbf{Sum norm},$$
$$\|\mathbf{A}\|_{F} := \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}\right)^{1/2}, \ p = 2, \ \mathbf{Frobenius norm},$$
$$\|\mathbf{A}\|_{M} := \max_{i,j} |a_{ij}|, \ p = \infty, \ \mathbf{Max norm}.$$
(1)

The Frobenius Matrix Norm 1.

•
$$\|\mathbf{A}^{H}\|_{F}^{2} = \sum_{j=1}^{n} \sum_{i=1}^{m} |\overline{a}_{ij}|^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2} = \|\mathbf{A}\|_{F}^{2}$$
.

The Frobenius Matrix Norm 2.

$$\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2 = \sum_{i=1}^{m} ||\mathbf{a}_{i\cdot}||_2^2$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2 = \sum_{j=1}^{n} \sum_{i=1}^{m} |a_{ij}|^2 = \sum_{j=1}^{n} ||\mathbf{a}_{\cdot j}||_2^2$$

Unitary Invariance.

- ▶ If $\mathbf{A} \in \mathbb{C}^{m,n}$ and $\mathbf{U} \in \mathbb{C}^{m,m}$, $\mathbf{V} \in \mathbb{C}^{n,n}$ are unitary
- $\|\mathbf{UA}\|_F^2 \stackrel{2.}{=} \sum_{j=1}^n \|\mathbf{Ua}_{j}\|_2^2 = \sum_{j=1}^n \|\mathbf{a}_{j}\|_2^2 \stackrel{2.}{=} \|\mathbf{A}\|_F^2.$
- $\models \|\mathbf{A}\mathbf{V}\|_{F} \stackrel{1.}{=} \|\mathbf{V}^{H}\mathbf{A}^{H}\|_{F} = \|\mathbf{A}^{H}\|_{F} \stackrel{1.}{=} \|\mathbf{A}\|_{F}.$

Submultiplicativity

Suppose A, B are rectangular matrices so that the product AB is defined.

$$\|\mathbf{AB}\|_{F}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{k} \left(\mathbf{a}_{i}^{T} \mathbf{b}_{\cdot j}\right)^{2} \leq \sum_{i=1}^{n} \sum_{j=1}^{k} \|\mathbf{a}_{i}\|_{2}^{2} \|\mathbf{b}_{\cdot j}\|_{2}^{2} = \|\mathbf{A}\|_{F}^{2} \|\mathbf{B}\|_{F}^{2}.$$

Subordinance

- $\blacktriangleright \|\mathbf{A}\mathbf{x}\|_2 \le \|\mathbf{A}\|_F \|\mathbf{x}\|_2, \text{ for all } \mathbf{x} \in \mathbb{C}^n.$
- Since ||v||_F = ||v||₂ for a vector this follows from submultiplicativity.

Explicit Expression

- ► Let $\mathbf{A} \in \mathbb{C}^{m,n}$ have singular values $\sigma_1, \ldots, \sigma_n$ and SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^H$. Then
- $\blacktriangleright \|\mathbf{A}\|_{F} \stackrel{3.}{=} \|\mathbf{U}^{H}\mathbf{A}\mathbf{V}\|_{F} = \|\mathbf{\Sigma}\|_{F} = \sqrt{\sigma_{1}^{2} + \dots + \sigma_{n}^{2}}.$

Consistency

- A matrix norm is called consistent on C^{n,n} if
 4. ||AB|| ≤ ||A|| ||B|| (submultiplicativity) holds for all A, B ∈ C^{n,n}.
- A matrix norm is consistent if it is defined on C^{m,n} for all m, n ∈ N, and 4. holds for all matrices A, B for which the product AB is defined.
- The Frobenius norm is consistent.
- ▶ The Sum norm is consistent.
- The Max norm is not consistent.
- ▶ The norm $\|\mathbf{A}\| := \sqrt{mn} \|\mathbf{A}\|_M$, $\mathbf{A} \in \mathbb{C}^{m,n}$ is consistent.

Subordinate Matrix Norm

Definition

- Suppose $m, n \in \mathbb{N}$ are given,
- Let || ||_α on C^m and || ||_β on Cⁿ be vector norms, and let || || be a matrix norm on C^{m,n}.
- We say that the matrix norm || || is subordinate to the vector norms || ||_α and || ||_β if ||Ax||_α ≤ ||A|| ||x||_β for all A ∈ C^{m,n} and all x ∈ Cⁿ.
- If $\| \|_{\alpha} = \| \|_{\beta}$ then we say that $\| \|$ is subordinate to $\| \|_{\alpha}$.
- The Frobenius norm is subordinate to the Euclidian vector norm.
- The Sum norm is subordinate to the l_1 -norm.

$$||\mathbf{A}\mathbf{x}||_{\infty} \leq ||\mathbf{A}||_{M} ||\mathbf{x}||_{1}.$$

Definition

Suppose $m, n \in \mathbb{N}$ are given and let $\|\cdot\|_{\alpha}$ be a vector norm on \mathbb{C}^n and $\|\cdot\|_{\beta}$ a vector norm on \mathbb{C}^m . For $A \in \mathbb{C}^{m,n}$ we define

$$\|A\| := \|A\|_{\alpha,\beta} := \max_{\mathbf{x}\neq 0} \frac{\|A\mathbf{x}\|_{\beta}}{\|\mathbf{x}\|_{\alpha}}.$$
 (2)

We call this the (α, β) operator norm, the (α, β) -norm, or simply the α -norm if $\alpha = \beta$.

Observations

- $\blacktriangleright \|\mathbf{A}\|_{\alpha,\beta} = \max_{\mathbf{x} \notin \ker(\mathbf{A})} \frac{\|\mathbf{A}\mathbf{x}\|_{\alpha}}{\|\mathbf{x}\|_{\beta}} = \max_{\|\mathbf{x}\|_{\beta}=1} \|\mathbf{A}\mathbf{x}\|_{\alpha}.$
- $\blacktriangleright \|\mathbf{A}\mathbf{x}\|_{\alpha} \leq \|\mathbf{A}\| \|\mathbf{x}\|_{\beta}.$
- $\blacktriangleright \ \|\mathbf{A}\|_{\alpha,\beta} = \|\mathbf{A}\mathbf{x}^*\|_{\alpha} \text{ for some } \mathbf{x}^* \in \mathbb{C}^n \text{ with } \|\mathbf{x}^*\|_{\beta} = 1.$
- The operator norm is a matrix norm on \mathbb{C}^{mn} .
- The Sum norm and Frobenius norm are not an α operator norm for any α.

Operator norm Properties

- The operator norm is a matrix norm on $\mathbb{C}^{m,n}$.
- The operator norm is consistent if the vector norm || ||_α is defined for all m ∈ N and || ||_β = || ||_α.

Proof

In 2. and 3. below we take the max over the unit sphere S_{β} .

1. Nonnegativity is obvious. If $\|\mathbf{A}\| = 0$ then $\|\mathbf{Ay}\|_{\beta} = 0$ for each $\mathbf{y} \in \mathbb{C}^n$. In particular, each column \mathbf{Ae}_j in \mathbf{A} is zero. Hence $\mathbf{A} = 0$.

2.
$$\|c\mathbf{A}\| = \max_{\mathbf{x}} \|c\mathbf{A}\mathbf{x}\|_{\alpha} = \max_{\mathbf{x}} |c| \|\mathbf{A}\mathbf{x}\|_{\alpha} = |c| \|\mathbf{A}\|_{\alpha}$$

$$\begin{aligned} 3. & \|\mathbf{A} + \mathbf{B}\| = \max_{\mathbf{x}} \|(\mathbf{A} + \mathbf{B})\mathbf{x}\|_{\alpha} \leq \\ & \max_{\mathbf{x}} \|\mathbf{A}\mathbf{x}\|_{\alpha} + \max_{\mathbf{x}} \|\mathbf{B}\mathbf{x}\|_{\alpha} = \|\mathbf{A}\| + \|\mathbf{B}\|. \end{aligned}$$

$$4. & \|\mathbf{A}\mathbf{B}\| = \max_{\mathbf{B}\mathbf{x}\neq\mathbf{0}} \frac{\|\mathbf{A}\mathbf{B}\mathbf{x}\|_{\alpha}}{\|\mathbf{x}\|_{\alpha}} = \max_{\mathbf{B}\mathbf{x}\neq\mathbf{0}} \frac{\|\mathbf{A}\mathbf{B}\mathbf{x}\|_{\alpha}}{\|\mathbf{B}\mathbf{x}\|_{\alpha}} \frac{\|\mathbf{B}\mathbf{x}\|_{\alpha}}{\|\mathbf{x}\|_{\alpha}} \\ & \leq \max_{\mathbf{y}\neq\mathbf{0}} \frac{\|\mathbf{A}\mathbf{y}\|_{\alpha}}{\|\mathbf{y}\|_{\alpha}} \max_{\mathbf{x}\neq\mathbf{0}} \frac{\|\mathbf{B}\mathbf{x}\|_{\alpha}}{\|\mathbf{x}\|_{\alpha}} = \|\mathbf{A}\| \|\mathbf{B}\|. \end{aligned}$$

The *p* matrix norm

- ► The operator norms ||·||_p defined from the p-vector norms are of special interest.
- Recall

$$\|\mathbf{x}\|_{p} := \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{1/p}, \ p \ge 1, \quad \|\mathbf{x}\|_{\infty} := \max_{1 \le j \le n} |x_{j}|.$$

- Used quite frequently for $p = 1, 2, \infty$.
- $\blacktriangleright \ \ {\rm We \ define \ for \ any \ } 1 \leq p \leq \infty$

$$\|A\|_{p} := \max_{\mathbf{x} \neq 0} \frac{\|A\mathbf{x}\|_{p}}{\|\mathbf{x}\|_{p}} = \max_{\|\mathbf{y}\|_{p}=1} \|A\mathbf{y}\|_{p}.$$
 (3)

The p-norms are consistent matrix norms which are subordinate to the p-vector norm.

Explicit expressions

Theorem For $\mathbf{A} \in \mathbb{C}^{m,n}$ we have

$$\|\mathbf{A}\|_{1} := \max_{1 \le j \le n} \sum_{k=1}^{m} |a_{k,j}|,$$
$$\|\mathbf{A}\|_{2} := \sigma_{1},$$
$$\|\mathbf{A}\|_{\infty} := \max_{1 \le k \le m} \sum_{j=1}^{n} |a_{k,j}|,$$

(max column sum)

(largest singular value of A)

(max row sum).

(4)

The expression $\|\mathbf{A}\|_2$ is called the **two-norm** or the **spectral norm** of **A**. The explicit expression follows from the minmax theorem for singular values.

Examples

For
$$\mathbf{A} := \frac{1}{15} \begin{bmatrix} 14 & 4 & 16 \\ 2 & 22 & 13 \end{bmatrix}$$
 we find
 $\mathbf{A} \|_1 = \frac{29}{15}.$
 $\mathbf{A} \|_2 = 2.$
 $\|\mathbf{A}\|_{\infty} = \frac{37}{15}.$
 $\|\mathbf{A}\|_F = \sqrt{5}.$
 $A := \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
 $\|A\|_1 = 6$
 $\|A\|_2 = 5.465$
 $\|A\|_{\infty} = 7.$
 $\|A\|_F = 5.4772$

The 2 norm

Theorem

Suppose $\mathbf{A} \in \mathbb{C}^{n,n}$ has singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$ and eigenvalues $|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|$. Then

$$\|\mathbf{A}\|_{2} = \sigma_{1} \text{ and } \|\mathbf{A}^{-1}\|_{2} = \frac{1}{\sigma_{n}},$$

$$\|\mathbf{A}\|_{2} = \lambda_{1} \text{ and } \|\mathbf{A}^{-1}\|_{2} = \frac{1}{\lambda_{n}}, \text{ if } \mathbf{A} \text{ is symmetric positive definite}$$
(6)

$$\|\mathbf{A}\|_{2} = |\lambda_{1}| \text{ and } \|\mathbf{A}^{-1}\|_{2} = \frac{1}{|\lambda_{n}|}, \text{ if } \mathbf{A} \text{ is normal.}$$
(7)

For the norms of \mathbf{A}^{-1} we assume of course that \mathbf{A} is nonsingular.

Unitary Transformations

Definition

A matrix norm $\| \|$ on $\mathbb{C}^{m,n}$ is called **unitary invariant** if $\|\mathbf{UAV}\| = \|\mathbf{A}\|$ for any $\mathbf{A} \in \mathbb{C}^{m,n}$ and any unitary matrices $\mathbf{U} \in \mathbb{C}^{m,m}$ and $\mathbf{V} \in \mathbb{C}^{n,n}$.

If U and V are unitary then U(A+E)V=UAV+F, where $\|F\|=\|E\|.$

Theorem

The Frobenius norm and the spectral norm are unitary invariant. Moreover $\|\mathbf{A}^H\|_F = \|\mathbf{A}\|_F$ and $\|\mathbf{A}^H\|_2 = \|\mathbf{A}\|_2$.

Proof 2 norm

- $\blacktriangleright \|\mathbf{U}\mathbf{A}\|_{2} = \max_{\|\mathbf{x}\|_{2}=1} \|\mathbf{U}\mathbf{A}\mathbf{x}\|_{2} = \max_{\|\mathbf{x}\|_{2}=1} \|\mathbf{A}\mathbf{x}\|_{2} = \|\mathbf{A}\|_{2}.$
- $\|\mathbf{A}^H\|_2 = \|\mathbf{A}\|_2$ (same singular values).
- $||\mathbf{AV}||_2 = ||(\mathbf{AV})^H||_2 = ||\mathbf{V}^H\mathbf{A}^H||_2 = ||\mathbf{A}^H||_2 = ||\mathbf{A}||_2.$

Perturbation of linear systems

- The exact solution is $x_1 = x_2 = 10$.
- Suppose we replace the second equation by

$$x_1 + (1 + 10^{-16})x_2 = 20 - 10^{-15}$$

- the exact solution changes to $x_1 = 30$, $x_2 = -10$.
- A small change in one of the coefficients, from 1 − 10⁻¹⁶ to 1 + 10⁻¹⁶, changed the exact solution by a large amount.

III Conditioning

- A mathematical problem in which the solution is very sensitive to changes in the data is called **ill-conditioned** or sometimes **ill-posed**.
- Such problems are difficult to solve on a computer.
- If at all possible, the mathematical model should be changed to obtain a more well-conditioned or properly-posed problem.

Perturbations

- We consider what effect a small change (perturbation) in the data A,b has on the solution x of a linear system Ax = b.
- Suppose y solves (A + E)y = b+e where E is a (small) n × n matrix and e a (small) vector.
- ► How large can **y**−**x** be?
- To measure this we use vector and matrix norms.

Conditions on the norms

- ► ||·|| will denote a vector norm on Cⁿ and also a submultiplicative matrix norm on C^{n,n} which in addition is subordinate to the vector norm.
- ▶ Thus for any $A, B \in \mathbb{C}^{n,n}$ and any $\mathbf{x} \in \mathbb{C}^n$ we have

$$||AB|| \le ||A|| ||B||$$
 and $||A\mathbf{x}|| \le ||A|| ||\mathbf{x}||$.

 This is satisfied if the matrix norm is the operator norm corresponding to the given vector norm or the Frobenius norm.

Absolute and relative error

- ► The difference ||y x|| measures the absolute error in y as an approximation to x,
- ► ||y x||/||x|| or ||y x||/||y|| is a measure for the relative error.

Perturbation in the right hand side

Theorem

Suppose $A \in \mathbb{C}^{n,n}$ is invertible, $\mathbf{b}, \mathbf{e} \in \mathbb{C}^n$, $\mathbf{b} \neq \mathbf{0}$ and $A\mathbf{x} = \mathbf{b}$, $A\mathbf{y} = \mathbf{b} + \mathbf{e}$. Then

$$\frac{1}{K(A)} \frac{\|\mathbf{e}\|}{\|\mathbf{b}\|} \le \frac{\|\mathbf{y} - \mathbf{x}\|}{\|\mathbf{x}\|} \le K(A) \frac{\|\mathbf{e}\|}{\|\mathbf{b}\|}, \quad K(A) = \|A\| \|A^{-1}\|.$$
(8)

- Proof:
- ► Consider (8). ||e||/||b|| is a measure for the size of the perturbation e relative to the size of b. ||y x||/||x|| can in the worst case be

$$K(A) = \|A\| \|A^{-1}\|$$

times as large as $\|\mathbf{e}\| / \|\mathbf{b}\|$.

Condition number

- K(A) is called the condition number with respect to inversion of a matrix, or just the condition number, if it is clear from the context that we are talking about solving linear systems.
- The condition number depends on the matrix A and on the norm used. If K(A) is large, A is called ill-conditioned (with respect to inversion).
- ► If K(A) is small, A is called well-conditioned (with respect to inversion).

Condition number properties

- Since $||A|| ||A^{-1}|| \ge ||AA^{-1}|| = ||I|| \ge 1$ we always have $K(A) \ge 1$.
- Since all matrix norms are equivalent, the dependence of K(A) on the norm chosen is less important than the dependence on A.
- Usually one chooses the spectral norm when discussing properties of the condition number, and the l_1 and l_{∞} norm when one wishes to compute it or estimate it.

The 2-norm

Suppose A has singular values σ₁ ≥ σ₂ ≥ ··· ≥ σ_n > 0 and eigenvalues |λ₁| ≥ |λ₂| ≥ ··· ≥ |λ_n| if A is square.

•
$$K_2(\mathbf{A}) = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2 = \frac{\sigma_1}{\sigma_n}$$

- $\blacktriangleright \ \mathcal{K}_2(\mathbf{A}) = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2 = \frac{|\lambda_1|}{|\lambda_n|}, \quad \mathbf{A} \text{ normal.}$
- It follows that A is ill-conditioned with respect to inversion if and only if σ₁/σ_n is large, or |λ₁|/|λ_n| is large when A is normal.
- $\mathbf{K}_2(\mathbf{A}) = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2 = \frac{\lambda_1}{\lambda_n}, \quad \mathbf{A} \text{ positive definite.}$

The residual

Suppose we have computed an approximate solution ${\bf y}$ to ${\bf A}{\bf x}={\bf b}.$ The vector ${\bf r}({\bf y}:)={\bf A}{\bf y}-{\bf b}$ is called the residual vector , or just the residual. We can bound ${\bf x}-{\bf y}$ in term of ${\bf r}({\bf y}).$

Theorem

Suppose $\mathbf{A} \in \mathbb{C}^{n,n}$, $\mathbf{b} \in \mathbb{C}^n$, \mathbf{A} is nonsingular and $\mathbf{b} \neq \mathbf{0}$. Let $\mathbf{r}(\mathbf{y}) = \mathbf{A}\mathbf{y} - \mathbf{b}$ for each $\mathbf{y} \in \mathbb{C}^n$. If $\mathbf{A}\mathbf{x} = \mathbf{b}$ then

$$\frac{1}{\mathcal{K}(\mathbf{A})} \frac{\|\mathbf{r}(\mathbf{y})\|}{\|\mathbf{b}\|} \le \frac{\|\mathbf{y} - \mathbf{x}\|}{\|\mathbf{x}\|} \le \mathcal{K}(\mathbf{A}) \frac{\|\mathbf{r}(\mathbf{y})\|}{\|\mathbf{b}\|}.$$
 (9)

Discussion

- ► If **A** is well-conditioned, (9) says that $\|\mathbf{y} \mathbf{x}\| / \|\mathbf{x}\| \approx \|\mathbf{r}(\mathbf{y})\| / \|\mathbf{b}\|.$
- In other words, the accuracy in y is about the same order of magnitude as the residual as long as ||b|| ≈ 1.
- ► If **A** is ill-conditioned, anything can happen.
- The solution can be inaccurate even if the residual is small
- We can have an accurate solution even if the residual is large.

The inverse of $\mathbf{A} + \mathbf{E}$

Theorem

Suppose $\mathbf{A} \in \mathbb{C}^{n,n}$ is nonsingular and let $\|\cdot\|$ be a consistent matrix norm on $\mathbb{C}^{n,n}$. If $\mathbf{E} \in \mathbb{C}^{n,n}$ is so small that $r := \|\mathbf{A}^{-1}\mathbf{E}\| < 1$ then $\mathbf{A} + \mathbf{E}$ is nonsingular and

$$\|(\mathbf{A} + \mathbf{E})^{-1}\| \le \frac{\|\mathbf{A}^{-1}\|}{1-r}.$$
 (10)

If r < 1/2 then

$$\frac{\|(\mathbf{A} + \mathbf{E})^{-1} - \mathbf{A}^{-1}\|}{\|\mathbf{A}^{-1}\|} \le 2K(\mathbf{A})\frac{\|\mathbf{E}\|}{\|\mathbf{A}\|}.$$
 (11)

Proof

- ▶ We use that if $\mathbf{B} \in \mathbb{C}^{n,n}$ and $\|\mathbf{B}\| < 1$ then $\mathbf{I} \mathbf{B}$ is nonsingular and $\|(\mathbf{I} \mathbf{B})^{-1}\| \leq \frac{1}{1 \|\mathbf{B}\|}$.
- Since r < 1 the matrix $I B := I + A^{-1}E$ is nonsingular.
- Since (I − B)⁻¹A⁻¹(A + E) = I we see that A + E is nonsingular with inverse (I − B)⁻¹A⁻¹.
- ► Hence, $\|(\mathbf{A} + \mathbf{E})^{-1}\| \le \|(\mathbf{I} \mathbf{B})^{-1}\| \|\mathbf{A}^{-1}\|$ and (10) follows.
- From the identity $(\mathbf{A} + \mathbf{E})^{-1} \mathbf{A}^{-1} = -\mathbf{A}^{-1}\mathbf{E}(\mathbf{A} + \mathbf{E})^{-1}$ we obtain by $\|(\mathbf{A} + \mathbf{E})^{-1} - \mathbf{A}^{-1}\| \le \|\mathbf{A}^{-1}\| \|\mathbf{E}\| \|(\mathbf{A} + \mathbf{E})^{-1}\| \le K(\mathbf{A}) \frac{\|\mathbf{E}\|}{\|\mathbf{A}\|} \frac{\|\mathbf{A}^{-1}\|}{1-r}.$
- Dividing by $\|\mathbf{A}^{-1}\|$ and setting r = 1/2 proves (11).

Perturbation in A

Theorem

Suppose $\mathbf{A}, \mathbf{E} \in \mathbb{C}^{n,n}$, $\mathbf{b} \in \mathbb{C}^n$ with \mathbf{A} invertible and $\mathbf{b} \neq \mathbf{0}$. If $r := \|\mathbf{A}^{-1}\mathbf{E}\| < 1/2$ for some operator norm then $\mathbf{A} + \mathbf{E}$ is invertible. If $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $(\mathbf{A} + \mathbf{E})\mathbf{y} = \mathbf{b}$ then

$$\frac{\|\mathbf{y} - \mathbf{x}\|}{\|\mathbf{y}\|} \le \|\mathbf{A}^{-1}\mathbf{E}\| \le K(\mathbf{A})\frac{\|\mathbf{E}\|}{\|\mathbf{A}\|}, \quad (12)$$
$$\frac{\|\mathbf{y} - \mathbf{x}\|}{\|\mathbf{x}\|} \le 2K(\mathbf{A})\frac{\|\mathbf{E}\|}{\|\mathbf{A}\|}. \quad (13)$$

Proof

- ► A + E is invertible.
- ▶ (12) follows easily by taking norms in the equation
 x y = A⁻¹Ey and dividing by ||y||.
- From the identity $\mathbf{y} \mathbf{x} = ((\mathbf{A} + \mathbf{E})^{-1} \mathbf{A}^{-1}) \mathbf{A}\mathbf{x}$ we obtain $\|\mathbf{y} \mathbf{x}\| \le \|(\mathbf{A} + \mathbf{E})^{-1} \mathbf{A}^{-1}\|\|\mathbf{A}\|\|\mathbf{x}\|$ and (13) follows.

Finding the rank of a matrix

- Gauss-Jordan cannot be used to determine rank numerically
- Use singular value decomposition
- numerically will normally find $\sigma_n > 0$.
- ▶ Determine minimal r so that σ_{r+1},..., σ_n are "close" to round off unit.
- ▶ Use this *r* as an estimate for the rank.

Convergence in $\mathbb{R}^{m,n}$ and $\mathbb{C}^{m,n}$

- Consider an infinite sequence of matrices {A_k} = A₀, A₁, A₂,... in ℂ^{m,n}.
- ► {A_k} is said to converge to the limit A in C^{m,n} if each element sequence {A_k(ij)}_k converges to the corresponding element A(ij) for i = 1,..., m and j = 1,..., n.
- {A_k} is a Cauchy sequence if for each ε > 0 there is an integer N ∈ N such that for each k, l ≥ N and all i, j we have |A_k(ij) − A_l(ij)| ≤ ε.
- ► {**A**_k} is bounded if there is a constant *M* such that |**A**_k $(ij)| \le M$ for all i, j, k.

More on Convergence

- ► By stacking the columns of A into a vector in C^{mn} we obtain
- A sequence {A_k} in C^{m,n} converges to a matrix A ∈ C^{m,n} if and only if lim_{k→∞} ||A_k − A|| = 0 for any matrix norm ||·||.
- A sequence {A_k} in C^{m,n} is convergent if and only if it is a Cauchy sequence.
- ► Every bounded sequence {A_k} in C^{m,n} has a convergent subsequence.

The Spectral Radius

$$\triangleright \ \rho(\mathbf{A}) = \max_{\lambda \in \sigma(\mathbf{A})} |\lambda|.$$

- For any matrix norm ||·|| on C^{n,n} and any A ∈ C^{n,n} we have ρ(A) ≤ ||A||.
- Proof: Let (λ, \mathbf{x}) be an eigenpair for **A**

▶
$$\mathbf{X} := [\mathbf{x}, \dots, \mathbf{x}] \in \mathbb{C}^{n, n}$$
.

►
$$\lambda \mathbf{X} = \mathbf{A}\mathbf{X}$$
, which implies
 $|\lambda| \|\mathbf{X}\| = \|\lambda \mathbf{X}\| = \|\mathbf{A}\mathbf{X}\| \le \|\mathbf{A}\| \|\mathbf{X}\|$.

• Since $\|\mathbf{X}\| \neq 0$ we obtain $|\lambda| \leq \|\mathbf{A}\|$.

A Special Norm

Theorem Let $\mathbf{A} \in \mathbb{C}^{n,n}$ and $\epsilon > 0$ be given. There is a consistent matrix norm $\|\cdot\|'$ on $\mathbb{C}^{n,n}$ such that $\rho(\mathbf{A}) \leq \|\mathbf{A}\|' \leq \rho(\mathbf{A}) + \epsilon$.

A Very Important Result

Theorem For any $\mathbf{A} \in \mathbb{C}^{n,n}$ we have

$$\lim_{k\to\infty} \mathbf{A}^k = \mathbf{0} \Longleftrightarrow \rho(\mathbf{A}) < \mathbf{1}.$$

Proof:

- ► Suppose ρ(A) < 1.</p>
- ► There is a consistent matrix norm ||·|| on C^{n,n} such that ||A|| < 1.</p>
- ▶ But then $\|\mathbf{A}^k\| \leq \|\mathbf{A}\|^k \to 0$ as $k \to \infty$.
- Hence $\mathbf{A}^k \to \mathbf{0}$.
- ► The converse is easier.

Convergence can be slow

►
$$\mathbf{A} = \begin{bmatrix} 0.99 & 1 & 0 \\ 0 & 0.99 & 1 \\ 0 & 0 & 0.99 \end{bmatrix}$$
, $\mathbf{A}^{100} = \begin{bmatrix} 0.4 & 9.37 & 1849 \\ 0 & 0.4 & 37 \\ 0 & 0 & 0.4 \end{bmatrix}$,
 $\mathbf{A}^{2000} = \begin{bmatrix} 10^{-9} & \epsilon & 0.004 \\ 0 & 10^{-9} & \epsilon \\ 0 & 0 & 10^{-9} \end{bmatrix}$

More limits

For any submultiplicative matrix norm ||·|| on C^{n,n} and any A ∈ C^{n,n} we have

$$\lim_{k \to \infty} \|\mathbf{A}^k\|^{1/k} = \rho(\mathbf{A}). \tag{14}$$